本文基于go1.22.5编写
1. 简单总结
read好比整个sync.Map的一个“高速缓存”,当goroutine从sync.Map中读数据时,sync.Map会首先查看read这个缓存层是否有用户需要的数据(key是否命中),如果有(key命中),则通过原子操作将数据读取并返回,这是sync.Map推荐的快路径(fast path),也是sync.Map的读性能极高的原因。
写操作:直接写入dirty(负责写的map)
读操作:先读read(负责读操作的map),没有再读dirty(负责写操作的map)
原理总结:
通过 read 和 dirty 两个字段实现数据的读写分离,读的数据存在只读字段 read 上,将最新写入的数据则存在 dirty 字段上
读取时会先查询 read,不存在再查询 dirty,写入时则只写入 dirty
读取 read 并不需要加锁,而读或写 dirty 则需要加锁
另外有 misses 字段来统计 read 被穿透的次数(被穿透指需要读 dirty 的情况),超过一定次数则将 dirty 数据更新到 read 中(触发条件:misses=len(dirty))
2. 核心结构体数据结构
1. sync.Map的数据结构
type Map struct {
mu Mutex
read atomic.Pointer[readOnly]
dirty map[any]*entry
misses int
}
2. readOnly的数据结构
type readOnly struct {
m map[any]*entry
amended bool // true if the dirty map contains some key not in m.
}
3. entry的数据结构
// An entry is a slot in the map corresponding to a particular key.
type entry struct {
// p points to the interface{} value stored for the entry.
//
// If p == nil, the entry has been deleted, and either m.dirty == nil or
// m.dirty[key] is e.
//
// If p == expunged, the entry has been deleted, m.dirty != nil, and the entry
// is missing from m.dirty.
//
// Otherwise, the entry is valid and recorded in m.read.m[key] and, if m.dirty
// != nil, in m.dirty[key].
//
// An entry can be deleted by atomic replacement with nil: when m.dirty is
// next created, it will atomically replace nil with expunged and leave
// m.dirty[key] unset.
//
// An entry's associated value can be updated by atomic replacement, provided
// p != expunged. If p == expunged, an entry's associated value can be updated
// only after first setting m.dirty[key] = e so that lookups using the dirty
// map find the entry.
p atomic.Pointer[any]
}
3. 逻辑解析
1. Load 查询操作
func (m *Map) Load(key any) (value any, ok bool) {
// 因read只读,线程安全,优先读取
read := m.loadReadOnly()
e, ok := read.m[key]
if !ok && read.amended {
m.mu.Lock()
// 双重检查(原因是前文的if判断和加锁非原子的,害怕这中间发生故事)
read = m.loadReadOnly()
e, ok = read.m[key]
// 如果read中还是不存在,并且dirty中有新数据
if !ok && read.amended {
e, ok = m.dirty[key]
// miss++
m.missLocked()
}
m.mu.Unlock()
}
if !ok {
return nil, false
}
return e.load()
}
2. Delete 删除操作
func (m *Map) LoadAndDelete(key any) (value any, loaded bool) {
read := m.loadReadOnly()
e, ok := read.m[key]
if !ok && read.amended {
m.mu.Lock()
read = m.loadReadOnly()
e, ok = read.m[key]
if !ok && read.amended {
e, ok = m.dirty[key]
delete(m.dirty, key)
// Regardless of whether the entry was present, record a miss: this key
// will take the slow path until the dirty map is promoted to the read
// map.
m.missLocked()
}
m.mu.Unlock()
}
if ok {
return e.delete()
}
return nil, false
}
// Delete deletes the value for a key.
func (m *Map) Delete(key any) {
m.LoadAndDelete(key)
}
3. Store 新增/修改操作
func (m *Map) Store(key, value any) {
_, _ = m.Swap(key, value)
}
func (m *Map) Swap(key, value any) (previous any, loaded bool) {
read := m.loadReadOnly()
if e, ok := read.m[key]; ok {
// 如果read存在这个key,并且没有被标记删除(检查删除在trySwap方法中),则尝试更新。
if v, ok := e.trySwap(&value); ok {
if v == nil {
return nil, false
}
return *v, true
}
}
m.mu.Lock()
read = m.loadReadOnly()
if e, ok := read.m[key]; ok {
if e.unexpungeLocked() {
// The entry was previously expunged, which implies that there is a
// non-nil dirty map and this entry is not in it.
m.dirty[key] = e
}
if v := e.swapLocked(&value); v != nil {
loaded = true
previous = *v
}
} else if e, ok := m.dirty[key]; ok {
if v := e.swapLocked(&value); v != nil {
loaded = true
previous = *v
}
} else {
if !read.amended {
// We're adding the first new key to the dirty map.
// Make sure it is allocated and mark the read-only map as incomplete.
m.dirtyLocked()
m.read.Store(&readOnly{m: read.m, amended: true})
}
m.dirty[key] = newEntry(value)
}
m.mu.Unlock()
return previous, loaded
}
func (e *entry) trySwap(i *any) (*any, bool) {
for {
p := e.p.Load()
if p == expunged {
return nil, false
}
if e.p.CompareAndSwap(p, i) {
return p, true
}
}
}
// 将read中未删除的数据加入到 dirty中
func (m *Map) dirtyLocked() {
if m.dirty != nil {
return
}
read := m.loadReadOnly()
m.dirty = make(map[any]*entry, len(read.m))
for k, e := range read.m {
// 通过此次操作,dirty中的元素都是未被删除的,可见标记为expunged的元素不在dirty中
if !e.tryExpungeLocked() {
m.dirty[k] = e
}
}
}
// 判断entry是否被标记删除,并且将标记为nil的entry更新标记为expunge
func (e *entry) tryExpungeLocked() (isExpunged bool) {
p := e.p.Load()
for p == nil {
// 将已经删除标记为nil的数据标记为expunged
if e.p.CompareAndSwap(nil, expunged) {
return true
}
p = e.p.Load()
}
return p == expunged
}
参考:
Golang sync.Map 原理(两个map实现 读写分离、适用读多写少场景)_golang sync.map原理-CSDN博客
由浅入深聊聊Golang的sync.Map今天在技术群中有小伙伴讨论并发安全的东西,其实之前就有写过map相关文章:由浅 - 掘金 (juejin.cn)